
Acta Cryst. (2001). A57, 125±139 McLachlan � Pair-functional method. I 125

research papers

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 23 June 2000

Accepted 3 October 2000

# 2001 International Union of Crystallography

Printed in Great Britain ± all rights reserved

The pair-functional method for direct solution of
molecular structures. I. Statistical principles

A. D. McLachlan

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England. Correspondence

e-mail: admcl@mrc-lmb.cam.ac.uk

The pair-functional principle shows how to construct a unique statistical

ensemble of strongly interacting atoms that corresponds to any feasible

measured set of X-ray intensities. The ensemble and all its distribution functions

are strictly periodic in the crystal lattice, so that each unit cell has exactly the

same arrangement of atoms at all times. The mean particle density in the cell is

uniform because the ensemble has unde®ned phases and the origin is not ®xed.

The atoms in this maximum-entropy ensemble interact through pairwise

additive periodic statistical forces within the unit cell. The ensemble average

pair-correlation function is matched to the observed originless Patterson

function of the crystal. The derived pairing force then becomes approximately

proportional to the Ornstein±Zernicke direct correlation function of the

ensemble. The atoms have a many-body Boltzmann distribution and the

logarithm of the likelihood of any particular conformation is related to its total

pairing potential. The pairing potential of a group of atoms acts like a local ®eld

in the cell. This property is used in the pair-functional method. Molecular

structures can be solved by a direct search in real space for clusters of atoms with

high pair potentials. During a successful search, the atoms move from their

original random positions to form larger and larger clusters of correctly formed

fragments. Finally, every atom belongs to a single cluster, which is the correct

solution.

1. Introduction

1.1. A unique ensemble

The pair-functional method described in this paper is a new

approach to the direct solution of molecular structures which

is based on a uniqueness principle from statistical mechanics.

The principle applies to a maximum-entropy statistical

ensemble of atomic structures that together reproduce the

observed magnitudes of the X-ray intensity data. This is a

many-body ensemble of sets of N interacting atoms rather

than either a collection of independent atoms or a single

de®nite structure and the interactions take the form of ®xed

pairwise additive statistical forces that act simultaneously

between all the pairs of atoms. The forces are uniquely de®ned

by the X-ray intensities and they come out as anisotropic

direction-dependent functions of the atom±atom separation

vectors. They provide the essential link between the experi-

mental observations and the statistical distribution of atomic

positions in the crystal unit cell. Hence, in principle, once the

ensemble has been set up, a structure may be solved by

searching within the many-body space for the most probable

sets of atomic positions that satisfy the experimental

constraints with reasonable accuracy (McLachlan, 1999).

1.2. Background: statistical mechanics

Equilibrium ensembles for both classical and quantum

statistical mechanics were fully developed and understood in

the 1930's, and used to deduce the properties of many forms of

matter from known interatomic forces (Fowler, 1936; Mayer &

Mayer, 1940; Hill, 1956; Landau & Lifshitz, 1958). The concept

of entropy was then completely explained in terms of the

density of states of the equilibrium system in quantum

mechanics (Mayer & Mayer, 1940) or the corresponding

volume in phase space in classical mechanics. More formally,

the entropy could also be derived in terms of the partition

function and the Darwin±Fowler method of steepest descents

(Fowler, 1936). The statistical theory of ¯uids, which we draw

on in this paper, became logically complete with Mayer's

cluster integral theory of the grand ensemble and the

succeeding many-body methods based on Mayer diagrams

(Mayer & Mayer, 1940; Morita & Hiroike, 1961; De Dominicis,

1962, 1963). These methods led to approximate integral

equations that explain the main features of the pair distribu-

tion functions in dense ¯uids, notably the Percus±Yevick

equation (Percus & Yevick, 1958). An excellent account of

these theories is given in the book by Hansen & McDonald

(1986).
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The pair-functional ensemble that we use in this paper is a

maximum-entropy ensemble that is identical in form with an

equilibrium Boltzmann distribution for an atomic ¯uid with

interparticle forces. Robert Harris and I originally derived it in

1961 for use in statistical mechanics and proved its uniqueness.

An important conceptual difference between conventional

statistical mechanics and the present work is that we are trying

to solve the inverse of the usual scienti®c problem. That is,

given the known pair distribution functions of the atoms in a

crystal unit cell, we seek a suitable ensemble and a suitable

corresponding set of ®ctitious statistical forces that will

reproduce the observed distribution.

In statistical physics, the interaction energies between

atoms are real and known quantum-mechanical two-body and

three-body forces that are deduced from physical laws. The

aim of the theory is to deduce the behaviour of the ¯uid from

known forces.

In contrast, the information theory of inverse inference

seeks to represent observed properties in terms of ®ctitious

forces that do not even pretend to be real. Their main purpose

is to give a provisional ®t to the observations. For example,

given a dense ¯uid, where three-body forces are important but

only the pair distribution function is observable, one might

derive a unique two-body force that ®ts the distribution and

represents some of the measurable effects of the three-body

force.

This point of view is similar in spirit to the inverse Monte

Carlo theory used in chemical physics (Allen & Tildesley,

1987; McGreevy & Howe, 1991; Hummer et al., 1998; DaSilva

et al., 1998).

The pair-functional method also has connections with

Klug's (1958) analysis of the probability distributions of

structure factors. The partition function used in the present

paper is identical with Klug's moment-generating function for

the intensities, but not the amplitudes, of structure factors.

Consequently, the partition function with imaginary statistical

forces is identi®ed with the characteristic function (Cramer,

1951) and therefore represents the Fourier transform of the

intensity probability distribution.

1.3. Background: maximum entropy

Jaynes (1957a,b, 1978) developed maximum-entropy

methods as a general framework for solving inverse problems,

initially to provide a description of non-equilibrium

phenomena in quantum statistical mechanics, and then later as

a self-suf®cient general-purpose system of logical inference.

Jaynes regarded the entropy itself as a fundamental entity,

justi®ed by axiomatic principles from information theory and

Bayesian statistics, and he showed how to harness the methods

in a wide variety of applications (Levine & Tribus, 1978;

Jaynes, 1983).

One special form of maximum-entropy ensemble, exten-

sively used for noise reduction and image processing (Gull &

Daniell, 1978; Bryan & Skilling, 1980; Gull & Skilling, 1984), is

an independent-atom ensemble in real space in which the

mean probability density has prescribed Fourier amplitudes

and speci®ed phases (Bricogne, 1984; Navaza, 1985, 1986). The

ensemble is analogous to the Boltzmann distribution of a

collection of strictly independent atoms in an applied external

®eld which varies throughout space. This type of ensemble

has been tried in crystallography as a phase-determination

method (Collins, 1982; Wilkins, 1983; Gull et al., 1987; Prince

et al., 1988), but now ®nds its most useful application as a

starting point for other Bayesian and tree-based phasing

methods (Bricogne, 1988; Bricogne & Gilmore, 1990; Gilmore

et al., 1990).

The pair-functional ensemble described in the present

paper is completely different from this simple type of inde-

pendent-atom ensemble, since it consists of sets of strongly

interacting atoms in real space, with given Fourier intensities,

but no explicitly speci®ed phases. The strong long- and short-

range statistical forces derived from a high-resolution data set

are suf®ciently speci®c to localize all the atoms in a de®nite

structure.

We often use the term statistical force in this paper. In

statistical mechanics and information theory, a statistical force

is analogous to the thermodynamic forces used in equilibrium

and non-equilibrium thermodynamics, and is de®ned in terms

of constrained entropy variations. Thus, if C is the mean value

of any statistical variable and S is the entropy of the ensemble,

the statistical force � corresponding to C is de®ned as

� � ÿ@S=@C, with a negative sign. Appendix B gives an

elementary example.

1.4. Two classes of direct methods

The majority of existing successful direct methods in crys-

tallography are either Patterson methods or phase-determi-

nation methods (Giacovazzo, 1980; Fortier, 1998). In

Patterson search methods, there is no statistical element and

clusters of atoms are constructed geometrically from the peak-

to-peak vector maps (Lipson & Cochran, 1966; Sheldrick,

1985). The search is thus limited to a fairly small number of

atoms. Phase-determination methods divide into two main

subclasses.

The macromolecular subclass includes important and highly

successful phasing methods that make use of extra phase

information from physical sources. Examples are heavy atoms,

anomalous dispersion, solvent envelopes or the presence of

identical subunits within one cell. The macromolecular

methods work mainly with density maps and often only assign

positions to atoms during the ®nal stages.

The subclass of unaided statistical phasing methods that

solve structures at atomic resolution relies on sets of trial

phases or on phase probability distributions, derived from the

expected properties of a random atomic model that ®ts the

data. The basic principles are embodied in Sayre's equation

(Sayre, 1952), the tangent formula (Karle & Hauptman, 1956),

and the joint phase probability distributions of triplets and

quartets (Hauptman & Karle, 1953; Naya et al., 1965;

Hauptman, 1975a,b). In earlier years, structures were often

solved by re®ning a carefully chosen starting set of phases

(Germain & Woolfson, 1968; Main et al., 1980). In the newest



methods, the starting point is usually a random set of atoms.

Re®nement of phases in reciprocal space then alternates with

a re®nement and reselection of trial atomic electron-density

peaks in the real space of the cell (Sheldrick, 1990; Hauptman,

1991; DeTitta et al., 1994; Weeks et al., 1994).

1.5. Pair-functional theory as a new class of method

The pair-functional theory leads to a new class of solution

methods. This class is ®rmly founded on a thorough statistical

analysis of random structures, but it uses atomic positions and

atomic probability distributions as its working material and

makes no explicit use of phases. Phases have no place in the

basic method, except for their indirect role in auxiliary Fourier

transform calculations. Although the method works with

atoms it need not be restricted to structures with data

measured to atomic resolution. For example, a low-resolution

molecular envelope could be modelled as a limited number of

large globular pseudo-atoms and treated by the method.

The aim of the theory is to develop a useful new series of

tools for crystallographers that complement or improve on

existing methods. This programme involves three distinct

activities:

(i) The theoretical speci®cation of specialized many-body

ensembles that embody the constraints imposed by different

kinds of experimental data. These are usually constraints on

the single-particle and two-particle probability densities.

(ii) To develop methods of inference for deducing the

underlying molecular structure from an analysis of each type

of ensemble.

(iii) The design of computer algorithms to carry out the

solution process.

The pair-functional theory allows a wide and ¯exible choice

of unique ensembles, constructed from various types of linear

constraints in the many-dimensional space of 3N atomic

coordinates for N atoms. The basic uniform ensemble for

identical atoms in a cell with P1 symmetry is only one starting

point. There are also restricted ensembles with higher

symmetry for each type of crystal space group [see paper III

of this series (McLachlan, 2001)]. Further special-purpose

ensembles can also be constructed to include heavy-atom data,

known structural fragments, and light atoms of different types.

Each of these ensembles uses uniquely determined statistical

forces that are matched to a well de®ned physically feasible set

of constraint values.

1.6. Advantages of a unique ensemble

At this point, a reader may ask what is gained by setting up

a complicated statistical ensemble of atoms instead of simply

looking for one actual molecular structure that ®ts the data.

One answer to this question is that in practice the actual

structure itself is often in thermal motion, with large

temperature factors for some atoms, and there may be regions

of the model which are disordered or ¯uctuating. Random

errors in the atomic coordinates lead to uncertainties in the

predicted structure factors (Read, 1990). The pair-functional

ensemble can easily be generalized to allow for many of these

effects. However, this ®rst paper will only treat crystals of ®xed

identical atoms.

More fundamentally, however, the ensemble has at least

two advantages. The ®rst is that the power of uniqueness

theorems is well established in many branches of science ±

particularly in electromagnetism, statistical mechanics and

quantum mechanics. Such theorems not only provide objective

tests of quality and completeness but often they also lead to

reliable variational methods for solving practical problems.

For example, the density-functional method in quantum

chemistry (Hohenberg & Kohn, 1964; Parr & Yang, 1989) has

led to exceedingly accurate ways of estimating chemical bond

energies. Single-particle density-functional theories have also

been used successfully in the theory of non-uniform ¯uids

(Mermin, 1964; Evans, 1979). The second advantage concerns

the search for trial structures. The paired-atom ensemble is a

collection of structures that is heavily biased towards those

models that satisfy the experimental conditions. An ef®cient

search of the ensemble, guided by the pairing statistics of the

atoms, can arrive at the correct structure much faster than

many simpler unguided methods.

In terms of phases, each member of the paired-atom

ensemble has a certain set of phase angles. The mean prob-

ability distribution of the phases in the ensemble as a whole

acquires a de®nite character, corresponding to the actual

molecular solution. However, this result is not achieved by

explicit phase bias, but through a process of enrichment,

whereby atomic structures with the correct Fourier intensities

are strongly concentrated in the ensemble.

1.7. Plan of the paper

The main topic of the present paper is the mathematical

foundations of the theory. We shall begin by stating the pair-

functional principle itself and showing how it can be derived

within the framework of the statistical mechanics of ¯uids and

the related maximum-entropy ensembles. The foundations

also yield a simple approximation for the pair potential in the

basic ensemble. On the basis of these fundamentals, it

becomes possible to discuss the scope of the theory and the

precise nature of the unique solutions that the ensembles

provide.

In the statistical mechanics of large systems, there is also a

well known property: the average features of the distribution

are strongly concentrated in the neighbourhood of the most

probable part of con®guration space. This property leads, in

the pair-functional theory, to a working rule, the most-prob-

able pairing hypothesis. This proposes that the ensemble

contains many members that are close to the actual molecular

structure and have the predicted pairing potential, while they

also closely match the observed experimental data. The most-

probable pairing hypothesis has two useful applications: ®rst it

enables a correct solution to be identi®ed without reasonable

doubt by checking that it does indeed have a nearly maximal

pairing potential. Secondly, it suggests a number of practical

computational methods for discovering the solution, by

making an ef®cient search for well paired clusters of atoms.
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x2 de®nes the essential statistical variables for a unit cell in

a strictly periodic crystal. x3 introduces the paired-atom

ensemble and the ®ctitious two-body pairing force. x4
discusses the uniqueness of the ensemble. x5 sums up these

results in the form of the pair-functional principle.

The remaining parts of the paper develop ideas needed

to search for solutions. These constitute the pair-functional

method. x6 introduces the direct correlation function as an

approximate pairing force and x7 describes the local pairing

®eld produced at a point in the cell by all the surrounding

atoms.

1.8. Mathematical appendices

In the remainder of this paper, the main mathematical

derivations have been con®ned to a series of separate short

Appendices. These should be readily understood by readers

with a knowledge of the statistical mechanics of ¯uids or of

maximum-entropy theory and they draw on well known

results. There are, however, important differences in detail

between a classical ¯uid and a crystal unit cell, so that careful

attention must be given to the altered de®nitions of the

statistical quantities that are used.

It is hoped that readers whose main interest is in the

application to crystallography rather than the theory will be

able to follow the outline of argument in the next sections. Our

®rst task will be to describe the connection between standard

crystallographic variables and the corresponding probability

variables of a statistical ensemble. This involves a conversion

from physical units such as electron densities to dimensionless

probability densities.

2. Statistical variables for the cell

The fundamental quantities that describe a crystal cell that

contains N atoms in the volume V are the electron density

�e�r�, the structure factors F�h� and the Fourier intensities

I�h�:

�e�r� � �1=V�PN
j�1

fj��rÿ xj� �1�

F�h� �PN
j�1

fj exp�2�ih � xj� �2�

I�h� � jF�h�j2; �3�

where fj is the scattering factor of an atom at xj and � stands

for the Dirac delta function. All coordinates, such as r, are

vectors measured in fractional cell coordinates, where the

components �x; y; z� range from 0 to 1. The expected mean

value of I�h� for a random arrangement of atoms is

�I �
PN
j�1

f 2
j : �4�

The Patterson function for a displacement vector u is

P�u� � �1=V�P
h

I�h� exp�ÿ2�ih � u� �5�

measured in units of electrons2 AÊ ÿ3. The origin peak of the

Patterson is not wanted, hence we use the originless Patterson

multiplied by V, which contains information about the distri-

bution of the N�N ÿ 1� pairs of atoms.

P
�2�
N �u� �

P
i 6�j

fi fj��uÿ xi � xj�

�P
h

I
�2�
N �h� exp�ÿ2�ih � u�; �6�

where I
�2�
N �h� is the reduced intensity from N atoms

I
�2�
N �h� � I�h� ÿ�I : �7�

P
�2�
N �u� and I

�2�
N �h� are both measured in electrons2 cellÿ1.

Sometimes it is useful to work with a levelled originless

Patterson function, whose mean value over the unit cell is

zero. This is de®ned as

�P
�2�
N �u� � P

�2�
N �u� ÿ

P
i6�j

fi fj: �8�

The choice of notation for the rest of this paper involves some

clashes between the well established systems of symbols used

in X-ray crystallography and in the statistical mechanics of

¯uids. To change either scheme could cause confusion but it is

necessary to bring together results from both disciplines and a

few clashes are inevitable. For example, f is used to de®ne an

atomic scattering factor or a probability distibution in

different contexts. To minimize problems of notation, most of

the statistical mathematics and its detailed derivation is placed

in self-contained Appendices, which we refer to when needed.

In order to set up statistical ensembles, we have to de®ne

suitable atomic probability densities. The model for the full

crystal is a strictly periodic repeating lattice with identical

atomic positions in each unit cell. This means that the entire

conformation of the crystal is speci®ed by the coordinates of

just N atoms in one representative central cell. Pairing forces

therefore operate between any atom in the central cell and all

the repeated atom images in this and other cells. In our

description, using cell fractional coordinates, the volume of

the cell is taken to be unity.

For simplicity, we now consider only the case of N equal

atoms with a constant scattering factor f . Many quantities are

labelled here with a subscript N to indicate that they refer to

an exact number of atoms, in a canonical ensemble, rather

than a ¯uctuating number of atoms in a grand ensemble. First

we consider a set of ®xed atoms, without averaging.

For a cell with atoms at ®xed positions, the particle number

density measured in atoms per cell and its Fourier transform

are

pN�r� �
PN
j�1

��rÿ xj� � V�e�r�=f �9�

�N�h� �
PN
j�1

exp�2�ih � xj� � F�h�=f : �10�



The rescaled originless Patterson function becomes a statis-

tical joint two-particle density K
�2�
N �u� and the reduced inten-

sity becomes �N�h�:
K
�2�
N �u� �

P
i6�j

��uÿ xi � xj�

� P
�2�
N �u�=f 2

�P
h

�N�h� exp�ÿ2�ih � u�; �11�

where

�N�h� � j�N�h�j2 ÿ N � I
�2�
N �h�=f 2: �12�

The mean value of K
�2�
N �u� over the whole cell is N�N ÿ 1�.

In the special case of equal atoms, the statistical structure

factors are almost the same as the normalized structure factors

and intensities:

EN�h� � �N�h�=N1=2 �13�
"N�h� � jEN�h�j2 ÿ 1 � �N�h�=N: �14�

In general, however, with atoms of different types, there is no

simple relationship between EN�h� and the �N�h� variables.

We now turn to the corresponding quantities for the cell

atomic ¯uid ensemble, which are averages over distributions

of atoms. These are de®ned in Appendix D. The single-particle

distribution function ��1�N �r� has a Fourier transform �̂�1�N �h�
with

��1�N �r� � N �P
h 6�0

�̂�1�N �h� exp�ÿ2�ih � r�: �15�

These single-particle quantities are the ensemble averages of

the atomic probability density pN�r� and its transform �N�h�.
��1�N �r� � h pN�r�i; �̂�1�N �h� � h�N�h�i: �16�

The ¯uid autocorrelation function k
�2�
N �u� and its transform

k̂
�2�
N �h� are related to the two-particle ¯uid distribution func-

tion ��2�N �r1; r2� by the equations

k
�2�
N �u� �

R
��2�N �r; r� u� dr �17�

k
�2�
N �u� � N�N ÿ 1� �P

h6�0

k̂
�2�
N �h� exp�ÿ2�ih � u�: �18�

These quantities are respectively the averages of the scaled

originless Patterson function and of the reduced intensity.

k
�2�
N �u� � hK�2�N �u�i; k̂

�2�
N �h� � h�N�h�i: �19�

Sometimes it is useful to work with a levelled originless

Patterson function, whose mean value over the unit-cell

volume is zero. The corresponding levelled statistical auto-

correlation function is

�K
�2�
N �u� �

P
i6�j

��uÿ xi � xj� ÿ N�N ÿ 1� �20�

and its mean value is denoted by �k
�2�
N �u�. The Fourier

transform of �k
�2�
N �u� is the same as k̂

�2�
N �h�, except that

�k̂
�2�
N �h� vanishes for h � 0. The pair-correlation function of a

uniform ¯uid [not to be confused with the above auto-

correlation function k
�2�
N �u�] is properly de®ned here as

h
�2�
N �u� � �1=N�N ÿ 1��k�2�N �u� ÿ 1; �21�

but in the physics of real ¯uids, where N is extremely large, the

factor N�N ÿ 1� is normally replaced by N2.

These correspondences can be used to set up the pair-

functional maximum-entropy ensemble that matches the

observations of certain X-ray intensities on a de®nite, but

unknown, structure of equal atoms in space group P1. The

ensemble is constructed with a uniform mean density of N but

a non-uniform speci®ed mean autocorrelation function k
�2�
N �u�.

Note that the mean density must be chosen to be uniform, for

otherwise the proposed density would specify a choice of the

unknown X-ray phases and constitute an implicit bias on the

unknown structure. Initially, we shall assume for simplicity

that every Fourier intensity is measured and known exactly.

This ideal situation implies that k
�2�
N �u� is known for every

particle separation u and has the speci®ed target value

k
�2�
N �u� � N�N ÿ 1� � N

P
h6�0

fjEobs�h�j2 ÿ 1g exp�ÿ2�ih � u�:

�22�
Later we shall relax these ideal conditions to allow for a

limited number of measured re¯ections, which may also be

accompanied by estimates of their experimental errors.

3. The paired-atom ensemble

Our objective is to ®nd the constrained statistical distribution

that maximizes the entropy of exactly N atoms in a crystal cell

and matches a given originless Patterson function, P
�2�
N �u�. We

shall use a many-body ensemble of correlated atoms, in which

the mean value of the Patterson function is expressed as a

linear constraint.

The standard maximum-entropy theory developed by

Jaynes (1978) starts from the concept of a discrete distribution

of probabilities pj over a set of states j with prior statistical

weights mj, as outlined in Appendix A. The theory postulates

that the most appropriate inferred distribution that satis®es

constraints on its mean values is the one that maximizes the

entropy

S � ÿP
j

pj log� pj=mj� �23�

subject to these constraints. Here the prior will be a uniform

distribution over the cell volume multiplied by a factor of 1=N!
for the number of identical particles. The standard theory

shows that, under a feasible linear constraintP
j

cjpj � C �24�

with weights cj and a target value C, the normalized prob-

abilities that maximize the entropy are

pj � �1=Z�mj exp��cj�; Z �P
j

mj exp��cj�; �25�

where � is a Lagrangian multiplier and Z is the probability

partition function. Thus, � is the statistical force associated

with the mean value of C and is the negative gradient of the
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entropy � � ÿ@S=@C. Appendix B summarizes the theory for

a general set of many linear constraints. The solution of the

equations also needs a general procedure for calculating �.

This can best be performed by minimizing the dual function

de®ned in Appendix C.

The pair-functional ensemble is constructed by maximizing

the entropy of a continuous probability distribution in many-

dimensional space. As described in Appendix D, the prob-

ability distribution for a cell with exactly N atoms is a function

of all 3N fractional cell coordinates for the atoms, written

f �N��rN� � f �N��r1; r2; . . . ; rN� �26�
and normalized to unity over the cell, so thatR

f �N��rN� drN � 1: �27�
The geometrical part of the entropy, omitting the log N!
correction, is de®ned in terms of f �N� as

SN � ÿ
R

f �N��rN� log f �N��rN� drN: �28�
The required ensemble for a continuous ¯uid con®ned in a cell

is the one that maximizes SN subject to an in®nite number of

constraints, which are the values of the distance autocorrela-

tion function k
�2�
N �u� for every spatial separation u in the cell.

This requires a continuous distribution of Lagrange multi-

pliers  �u�.
In order to establish the correspondence between the

crystal cell theory and the established statistical mechanics of

¯uids, it is helpful ®rst to consider the ensemble for a general

non-uniform ¯uid, with given non-uniform single-particle and

two-particle distributions ��1�N �x� and ��2�N �x; y�. Here there are

two kinds of Lagrangian multipliers ��x� and  �x; y� that

behave like negative effective single-particle and pair-inter-

action potential energies, and the maximum-entropy ensemble

is the Boltzmann distribution in this energy ®eld (see

Appendix E). This general type of ensemble will be used in

later work to derive pair-functional theories that include

single-particle constraints derived from information about

solvent envelopes, heavy-atom derivatives and known struc-

tural fragments in the cell. The grand canonical form of the

non-uniform ensemble is also used for many-body treatments

of the problem, including the estimation of the Lagrangian

multipliers from the theory of ¯uids, which is treated in a later

paper.

Our limited objective of ®tting the distance autocorrelation

function can be achieved with a spatially uniform ensemble

and a simple periodic distance- and direction-dependent

pairing force (Appendix F). This was the result proved by

McLachlan & Harris (1961). Note that the constraints repre-

sented by the Patterson function of a crystal are highly

anisotropic, unlike the spherically symmetric radial distribu-

tion function of a ¯uid. Therefore, the pairing force is strongly

directional. When the entropy is maximized, varying f �N� so as

to keep the autocorrelation function ®xed, the probability of

an arbitrary atomic conformation rN is found to be

f �N��rN� � �1=ZN� exp�	N�rN��; �29�
where the many-body pair potential

	N�rN� �P
i< j

 �ri ÿ rj� �30�

is a sum of two-particle interactions, constructed from the

unique pairing force function  �u�, which is in turn deter-

mined implicitly by the autocorrelation function k
�2�
N �u� given

as data. ZN is the partition function of the system, while the

resulting maximum value of the entropy depends on ZN and

the average value of 	N in the probability distribution f �N�.

ZN �
R

exp�	N�rN�� drN �31�
SN�max:� � log ZN ÿ h	Ni: �32�

These general relations take a more useful form when

expressed in terms of Fourier variables. Suppose ®rst that all

the atoms occupy de®nite positions in the cell, so that their

probability density pN�r� has de®nite Fourier coef®cients

�N�h� and reduced intensities �N�h�. Also let us take the

Fourier transform of  �u�,
 �u� � P

h6�0

 ̂�h� exp�ÿ2�ih � u�; �33�

where  ̂�h� �  ̂�ÿh� and  ̂�h� is therefore real. [We note that

addition of a uniform constant to  �u� makes no difference to

the probability distribution f �N��rN� in the canonical ensemble,

and so it is always possible to choose  ̂�h� � 0 for h � 0.] The

total pair potential of any atomic conformation rN now

becomes

	N�rN� � 1
2

P
h 6�0

 ̂�ÿh��N�h�

� P
h>0

 E�h�fjEN�h�j2 ÿ 1g; �34�

where the second sum is over the half-space of h. Here,

 E�h� � N ̂�h� �35�
is the normalized Fourier coef®cient of the pair potential (see

Appendix G). The half-space in the reciprocal lattice may be

de®ned for space group P1 as the set of �h; k; l� indices with

h � 0, excluding the origin and giving half weight to the

indices �0; k; l�.
Although the above ensemble for the completely speci®ed

Patterson function is a correct direct analogy of the distribu-

tion functions used in the statistical mechanics of ¯uids, it is

not yet suitable for use in crystallography. The experimental

conditions are different, since the entire Patterson function is

never known. Instead, a certain number of X-ray intensities

are measured for a limited set of re¯ections, with reciprocal-

lattice vectors denoted by H. The realistic constraints on the

ensemble are to maximize SN, given the sparse conditions

k̂
�2�
N �H� � h�N�H�i �36�

for the measured re¯ections H only, while the unmeasured

components k̂
�2�
N �h� are unknown. These conditions lead to a

solution in terms of the Fourier components  ̂�H� of the pair

potential for the measured re¯ections, while  ̂�h� � 0 for all

the unmeasured ones. See Appendix G. Under these sparse

constraints, the total many-body pair potential of any parti-



cular atomic conformation within the solution ensemble takes

the form

	N�rN� � P
H>0

 E�H�fjEN�H�j2 ÿ 1g: �37�

Here the sum only includes the measured re¯ections and

EN�H� are the normalized structure factors for N equal atoms.

It is convenient to subtract the origin peak from the spatial

potential  �u� to give an originless function  0�u� as described

in Appendix G, so that the pair potential of the atoms is

reduced to its simplest form

	N�rN� � P
H>0

 0
E�H�jEN�H�j2: �38�

Now the sum is over the half-space of measured re¯ections H.

4. Linear constraints and uniqueness

4.1. Mixed distributions

The uniqueness properties of maximum-entropy ensembles

are general theorems that only hold under certain speci®ed

conditions (Jaynes, 1978). The most important condition is

that all the constraints refer to average values of quantities

that are linear functions of the underlying probability distri-

butions f .

Suppose that fA and fB are probabilities of an event, taken

from two distributions that both satisfy the same set of linear

constraints. Clearly any linear mixture

f � �1ÿ w�fA � wfB �39�

also satis®es the constraints. Furthermore, the logarithms

satisfy the inequality

ÿf log f � ÿ�1ÿ w�fA log fA ÿ wfB log fB: �40�

Thus, if a many-body distribution is a mixture of two possible

solutions to a given set of linear constraints:

f �N��rN� � �1ÿ w�f �N�A �rN� � wf
�N�
B �rN�; �41�

it follows immediately that

SN � �1ÿ w�SNA � wSNB: �42�

In consequence, either the maximum-entropy solution is

unique, with a single distribution f �N�, or there are a number

of possible solutions, each of which have the same entropy

(McLachlan & Harris, 1961). Any mixture of these degen-

erate solutions is equally valid. Examples of non-unique

statistical ensembles occur in mechanics when there is insuf-

®cient information to specify the physical situation unam-

biguously. For example, an isolated system of particles with a

given energy may have an unknown centre of mass or

unknown orientation. The inequality above may become an

equality in practice if the two trial many-body distributions fA

and fB have negligible overlap with one another, for example

if they represent two enantiomorphs of a molecule in a cell.

4.2. Linear many-body constraints

An important class of linear constraints in a many-body

ensemble of N particles with a distribution function f �N��rN� is

that which speci®es the values of any reduced distribution

function for a smaller number of particles, of the form

��n�N �rn� � ��n�N �r1; r2; . . . ; rn�, or values for the Fourier

components of such distributions. The reduced distributions

are themselves linear averages over the full distribution

f N�rN�. Any combination of these linear constraints may

therefore be used to construct a unique maximum-entropy

ensemble in the N-body space. The pair-functional ensemble is

derived from linear conditions on ��2�N �r1; r2� alone and

consequently it is unique in the full space rN.

We note here that it would be possible to generate unique

ensembles that also set limits on the ¯uctuations of two-

particle quantities. For example, two-, three- and four-atom

potentials could be combined to match any mean square

structure factor to an observed value hE2i � T2 and at the

same time assign a chosen value to the ¯uctuations about the

mean de®ned as h�E2 ÿ T2�2i � U2. These more complicated

ensembles are less smooth than the bare pair-functional

ensemble and have a lower entropy, so they may not be as

useful for computational purposes.

As a counter-example to the uniqueness theorems above,

consider the well known independent-atom maximum-

entropy ensemble consisting of a distribution ��1��r1�,
normalized to a total of N atoms (Gull & Daniell, 1978; Gull &

Skilling, 1984). Here the derived pair-correlation function is

not linear but is a quadratic function of products

��1��r���1��r� u� and cannot be used as a constraint to generate

a unique maximum-entropy distribution (LemareÂchal &

Navaza, 1991).

These two examples demonstrate that the multidimensional

N-body ensemble with its linear particle distribution functions

and constraints has important advantages when compared

with an independent-atom ensemble.

5. The pair-functional principle

We now state the pair-functional principle in its simplest basic

form, as proved above:

Every feasible observed set of normalized structure-factor

intensities from a de®nite arrangement of N equal atoms in a

crystal cell generates a unique maximum-entropy statistical

ensemble. Here atoms at positions ri and rj all interact in pairs

through a common long-range distance- and direction-

dependent potential  �ri ÿ rj�. We call  �u� for separation u

the pairing force function. This is a functional of all the

observed intensities (or equally of the entire originless

Patterson function of the crystal), assumed here to be error-

free. It is not a mechanical force but an entropy gradient. In

reciprocal space, the pairing force is expressed in terms of its

normalized Fourier components  E�H� for the measured

re¯ections, while the statistical forces associated with the

unmeasured re¯ections all vanish.
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The pair-functional principle can immediately be general-

ized in several ways, which will be explored later:

(i) The target intensities and model intensities may equally

well be generated from any valid statistical distribution of

N-atom structures (e.g. a disordered crystal or a model with

random positional errors rather than one de®nite set of

coordinates).

(ii) Crystals where some information about the single-

particle density is given (e.g. partial phase information) are

described by adding in a further unique single-particle

potential ��r�.
(iii) In any space group of higher symmetry, the unique

ensemble has the highest possible symmetry compatible with

the space group.

(iv) In a cell with two or more types of atom, having scat-

tering factors fa; fb; . . ., the pairing force between atoms is

proportional to fa fb �rai ÿ rbj�, with a single pairing force

function  �u� operating on all atom types.

(v) Supplementary linear constraints could be applied to

generate further unique ensembles in which three- or four-

particle averages of ��n�N �rn� have speci®ed values.

The quantity 	N�rN� for any atomic structure with coordi-

nates rN will be called the total pair potential of the confor-

mation. The signi®cance of 	 can be expressed in Bayesian

terms, where we consider the structure-solution process as a

chain of statistical inferences that lead from the observed

intensities to the true atomic structure (Bricogne, 1991, 1993).

In the pair-functional framework,

f �N��rN� drN � �1=ZN� exp�	N�rN�� drN �43�
is the exact normalized conditional probability that the

structure rN with ranges drN is present in the paired ensemble.

Thus, 	N�rN� is the logarithm of the likelihood of this event.

The ensemble itself is not perfect as it contains samples of

erroneous structures with intensities that deviate randomly

from the observed values. Therefore, 	 only gives an

approximation to the likelihood that the atomic coordinates

are correct; the paired atoms must also be correctly placed so

as to reproduce the observed intensities.

Because the ensemble that describes the data is unique, the

pair-functional principle offers a new way to solve crystal-

lographic problems. A search for correct sets of trial phases is

replaced by a phaseless search for correctly placed clusters of

atoms from within the speci®ed ensemble, working directly

with atoms and physically feasible positive-density maps at all

times.

6. An estimate of the pairing force

Before any search begins, it is ®rst necessary to know the

pairing force. The maximum-entropy method provides a

complete prescription for calculating the unique paired-atom

ensemble that represents a given experimental set of X-ray

intensities. But we also need a simple practical way to estimate

a good approximation for the pairing force  �u� or its

normalized Fourier components  E�H�. This calculation really

requires the grand ensemble and will be discussed fully in a

later paper. An excellent starting point is to use the Ornstein±

Zernicke direct correlation function of the atoms, considered

as a ¯uid (Ornstein & Zernicke, 1914; Hansen & McDonald,

1986).

We assume that the observed intensities Iobs�H� of the

measured re¯ections H have been suitably scaled to give

target values T�H� for the normalized structure amplitudes

with H 6� 0,

jT�H�j2 � jEobs�H�j2; �44�
so that the autocorrelation function or pair-correlation func-

tion to be matched in the grand ensemble will have the Fourier

coef®cients

k̂�2��H� � NfjT�H�j2 ÿ 1g �45�
ĥ�2��H� � �1=N�fjT�H�j2 ÿ 1g: �46�

Suppose that c�2��u� is the direct correlation function of the

paired-atom ¯uid and its Fourier components are ĉ�2��H�. Then

it can be shown by perturbation theory that for weak forces

 �u� � c�2��u� �47�
while the exact Ornstein±Zernicke relation states that

ĉ�2��H� � ĥ�2��H�
1� Nĥ�2��H� : �48�

This leads immediately to the result that the normalized

pairing force is

 E�H� �
jT�H�j2 ÿ 1

jT�H�j2 : �49�

A fuller discussion follows in paper III of this series. Any other

Fourier components of the pairing force  E�k� must be set to

zero if the amplitude jT�k�j is not measured or if k � 0. Note

that in this approximation each Fourier component  E�H� of

the potential is independent of the target intensities jT�k�j2
of other re¯ections k. Thus the different re¯ections behave

nearly independently in the many-body ensemble. The

approximation above breaks down for very weak intensities,

where it would produce a very large negative force. A large

negative statistical force implies that atomic arrangements

with a large Fourier intensity for re¯ection H have extremely

small probabilities. Thus these terms in 	 act like strongly

repulsive mechanical forces in a real ¯uid. In practice, it is

useful to make an empirical correction, using the formula

 E�H� �
jT�H�j2 ÿ 1

jT�H�j2 � T2
low

; �50�

where Tlow is a small cut-off amplitude. This approximate force

function has an interesting series expansion, valid for typical

re¯ections with jT�H�j2 close to 1:

 E � �T T� ÿ 1� ÿ 2�T T� ÿ 1�2 � 3�T T� ÿ 1�3 ÿ . . . ;

�51�
in which  � �1� T2

low�ÿ1. Here the ®rst term is the transform

of the levelled originless Patterson and the remaining

correction terms correspond in real space to repeated self-



convolutions of �P
�2�
N �u�. Thus, the force  �u� is a general-

ization of the Patterson function and shares many of its

properties.

7. Atom searches and the local field

Having selected a suitable force,  �u�, the next stage in a

structure solution is to search for the most probable confor-

mations of the interacting atoms in the ensemble. These

conformations will be selected from among those that have the

highest values for the total pair potential 	. The conforma-

tions must also be constrained to yield Fourier intensities close

to the observed ones. The pairing force is a long-range

wavelike potential, extending across the whole cell, and good

clusters of interacting atoms need not be localized in any small

region.

The physical nature of the ensemble depends on the

number of measured X-ray intensities. If there are very few,

the ensemble is like an interacting ¯uid with large ¯uctuations

and no ®xed atomic positions. If there are many measurements

at atomic resolution, the ensemble represents a condensed

solid phase of ®xed atoms in a single structure.

The ensemble is analogous to a Boltzmann distribution of

interacting atoms in a ¯uid and so a wide variety of search

methods might be used, ranging from simple iterations or

gradient optimizations of 	 to Monte Carlo thermal simula-

tions. The computational cost is dominated by the frequent

Fourier transforms needed to calculate 	.

Any trial arrangement of atoms generates a local pairing

®eld V�x� at every point in the cell, which is the gradient of 	
for variations of the probability density, in the sense that

d	N �
R

V�x� dpN�x� dx: �52�
Therefore, V�x� is a scalar variable and is de®ned in terms of

the originless pairing force  0�u�. For an arrangement of point

atoms at de®nite positions, the particle number density takes

the form

pN�r� �
P

j

pj��rÿ rj�; �53�

where pj is the occupancy of the site at rj. In particular, for N

equally occupied sites, the total pair potential is

	N�rN� � 1
2

P
i;j

 0�ri ÿ rj�; �54�

and the ®eld is

V�x� �PN
j�1

 0�xÿ rj�: �55�

If a new atom is introduced at a vacant point x then 	 is

increased by V�x�. Similarly, if an existing atom is removed

from the point ri the change is ÿV�ri�. Remember that the

originless force  0�u� has no spurious self-energy terms

between an atom and itself. A trial structure can be improved

by moving atoms from improbable ®lled points of low

potential to more probable vacant points of higher potential.

The total pair potential of all the atoms is also expressed in

terms of V�x� and the positive atomic probability distribution

pN�x� by the equation

	trial � 1
2

R
V�x�pN�x� dx � 1

2

P
H

V̂�ÿH��N�H�: �56�

Since V�x� is periodic in the crystal it has a Fourier expansion

V�x� � P
h6�0

V̂�h� exp�ÿ2�ih � x�; �57�

where the components vanish unless H is a measured re¯ec-

tion:

V̂�H� � Nÿ1=2 0
E�H�E�H�; �58�

so that

	trial �
P
H>0

 0
E�H�jE�H�j2: �59�

Suppose now that an actual target structure exists that exactly

matches the observed data. Then the target value of the

normalized structure amplitude is jT�H�j for each measured

re¯ection, with

jT�H�j2 � jEobs�H�j2: �60�
The total pair potential of the target is therefore known in

advance and has the value

	targ �
P
H>0

 0
E�H�jT�H�j2: �61�

The structure search is governed by the requirement that 	trial

should be matched to 	targ at the same time as each jE�H�j is

matched to jT�H�j. This outline of a typical search process

brings out several points:

(i) Acceptability. Any point-atom structure rN or indeed any

valid positive probability density pN�x� with the correct

amplitudes jT�H�j has 	 � 	targ.

(ii) Non-physical maps. Any density map constructed from

jT�H�j with arbitrary phases also has 	 � 	targ. But this is a

physically meaningless 	 value because the maps generally

contain false negative densities that contribute spuriously to

	. The pair-functional principle applies only to positive

probabilities and any proposed negative density must be

®ltered out.

(iii) Pair-potential as a search criterion. The utility of 	 is

twofold, as a ®gure of merit (relative to 	targ), and as a target

for optimization, which guides atoms towards a solution more

or less ef®ciently.

(iv) Most-probable pairing hypothesis. The unique ensemble

generated by the experimental data is de®ned to have a mean

total potential of h	i � 	targ. It must contain a scatter of

values both higher and lower than the mean. In large statistical

ensembles, it is usually found that the most probable value

coincides with the mean value. Therefore we postulate that

	targ will normally be the most probable value in the

ensemble. Consequently, a search of the 3N-dimensional space

of rN is likely to yield many structures that match 	targ. Some

among these will also nearly match the observed Fourier

intensities and be useful trial solutions.
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Tests with a variety of search methods that use the pairing

force ®eld show that the progress of the atomic model through

successive iterations towards a correct solution often mimics

the condensation of a ¯uid into an ordered solid state. Initially

there is a rapid rise in the total pair potential, followed by a

long run of small ¯uctuations during which the system hardly

appears to change. Small clusters of correctly placed atoms

form and dissolve in turn. Eventually a larger stable nucleating

cluster may form that appears to act as a template. Then the

whole process of condensation to a complete solution is

suddenly completed in a few steps.

This behaviour has the characteristics of a highly coopera-

tive dynamic phase transition. It recalls the similar behaviour

of the steps in SHELX or Shake-and-Bake searches (Shel-

drick, 1990; DeTitta et al., 1994; Weeks et al., 1994).

There are some suggestive similarities between the

construction of the pair force ®eld V�r� for a trial set of atoms,

as described above, and the use of multiple Patterson peaks to

solve structures with the help of the symmetry minimum

function (Simpson et al., 1965) or other multiple vector search

methods (Beevers & Robertson, 1950; Buerger, 1951, 1959;

Jacobson & Beckman, 1979). All of these methods use the

image-forming properties of the Patterson function to pick out

probable atomic positions and then take special precautions

to weight down overlapping peaks (Luger & Fuchs, 1986;

PavelcÏõÂk, 1986; Terwilliger et al., 1987). Such methods are

particularly suitable for solving heavy-atom structures (Shel-

drick et al., 1993; PavelcÏõÂk, 1994).

The pairing force  �u� also has strong imaging properties in

a good trial structure at high resolution, since the peaks of

V�r� pick out the correct atomic positions. There are, however,

important differences. The pairing force is a statistical log-

likelihood function rather than a geometrical construct, so its

values must be added and not multiplied. Also the formula for

 E�H� weights the strong and weak re¯ections very differently

from the Patterson, taking large negative values for the

weakest re¯ections.

8. Conclusions

This paper completes the outline of the statistical principles

of the pair-functional method and aims to show that it is a

logically consistent and well founded theory. We have only

touched on the derivation of the pairing force function from

the direct correlation function and this will be completed

elsewhere. The strong- and weak-coupling limits of the theory

are also important future topics, since they show the connec-

tions with other theories, such as the temperature-dependent

self-consistent ®eld and the independent-atom maximum-

entropy method. Another important connection will be

established between the well known phase probability distri-

butions of triplets and quartets and a new set of corresponding

averages in the paired-atom ensemble.

The actual solution of real structures and a full description

of the computational methods employed will be given

in a second paper. The choice of search algorithm is partly

governed by the costs of Fourier transforms and peak-

searching methods carried out on the trial set of atoms. A

Gibbs ensemble search at a controlled temperature would be

a theoretical ideal, but has been postponed for future use in

favour of two simple faster procedures. One is a variant of

normal tangent formula re®nement in which a large set of

trial peaks from a density map is pruned by selecting a

smaller subset of well paired atoms. The atoms are chosen to

have the best combined pairing potential in the presence of

all their selected neighbours. The other procedure is a self-

consistent molecular ®eld search, at a speci®ed ®ctitious

temperature, in which every atom is represented by a

temperature-dependent probability peak in the map. The

peak occupancy for a given atom is an equilibrium Boltzmann

distribution generated by the mean long-range pairing ®eld

from all the other atomic densities in the cell.

APPENDIX A
Entropy of a probability distribution

In probability theory, entropy is used as a measure of the

spread, or amount of uncertainty, in a probability distribution

(Jaynes, 1978). For example, in a discrete distribution over n

possible states, with probabilities p1; p2; . . . ; pn, the entropy is

de®ned as

S � ÿP
j

pj log pj: �62�

The smoothest possible distribution, with all pj equal to 1=n,

has the maximum possible entropy S�max:� � log n. This

de®nition assumes implicitly that all the states have equal

statistical weights. More generally, if the n possibilities are not

single states but groups or clusters of states with statistical

weights mj, adding up to a total weight of M, the entropy

becomes

S � ÿP
j

pj log� pj=mj� �63�

and the smoothest distribution has pj � mj=M. In Bayesian

statistics, the quantities mj often represent assumed prior

probabilities.

There are a variety of logical paths and statistical arguments

that lead to these initial de®nitions, and the foundations have

been discussed extensively by Shannon (Shannon, 1948a,b;

Shannon & Weaver, 1949) and Jaynes (1983). One of the

simplest approaches is to consider an experiment of repeated

random trials. Suppose that a single trial has n possible

outcomes, all equally probable, with known probabilities of

1=n for each one. We attempt to verify these probabilities by

carrying out a large number, �, of repeated trials in succession.

Consider the result of one particular series experiment, in

which the various outcomes are seen to occur respectively

�1; �2; . . . ; �n times. The experimenter would deduce that the

measured probabilities for the outcomes are

pj � �j=�: �64�
These will not in general be exactly the same as the actual

underlying probabilities 1=n. According to the binomial



probability distribution, it can be predicted that the number of

different ways of obtaining the observed counts �1; �2; . . . ; �n

in any one series of � trials is exactly

W � �!

�1!�2! . . . �n!
: �65�

In the limit of large �, keeping the ratios pj ®xed, W can be

estimated accurately by Stirling's formula �log � � � log �ÿ ��
with the result that

log W � �S and S � ÿP
j

pj log pj: �66�

Thus the entropy of the inferred distribution pj is a measure of

how likely it is to be observed when the actual probabilities

are all equal.

In the more general case, where a single trial has unequal

probabilities, with weights mj, a similar argument gives the

entropy derived from log W as

S � ÿP
j

pj log� pj=mj� ÿ log M: �67�

The constant term log M is usually omitted.

APPENDIX B
The most probable distribution with constraints

One often needs to deduce the form of the most probable, or

smoothest, non-uniform probability distribution that is

compatible with given average values for a number of quan-

tities of interest. Let there be l quantities c1; c2; . . . ; cl in a

system with n discrete states, and suppose that the quantity c�
takes the value c�j in state j. We seek the maximum-entropy

distribution of pj that yields given average values C� for each

of the quantitiesP
j

c�jpj � C�; where A �P
j

pj � 1: �68�

The solution is well known from statistical mechanics and uses

Lagrangian multipliers. The Lagrangian equation for varia-

tions of the probabilities is

�S� �0�A�
P
�

�C� � 0 �69�

and leads to the conditionP
j

ÿ�1� log� pj=mj�� � �0 �
P
�

��c�j

� �
�pj � 0: �70�

The multiplier �0 is eliminated and the normalized prob-

abilities are

pj �
1

Z��1; �2; . . . ; �l�
mj exp

P
�

��c�j

� �
; �71�

where Z is the partition function,

Z �P
j

mj exp
P
�

��c�j

� �
: �72�

The value of the entropy for this distribution is an implicit

function of the average values

S�C1;C2; . . . ;Cl� � S�max:� � log Z ÿP
�

��C�: �73�

The multipliers �� and the mean values C� are obtained as

partial derivatives of S and log Z, respectively,

@S

@C�

� ÿ��;
@ log Z

@��
� C�: �74�

Because �� are the negative gradients of the entropy, they are

often described as the statistical forces associated with the

constraints, by analogy with mechanical forces which are

derivatives of the energy and the thermodynamic entropic

forces which act in irreversible processes. This maximum-

entropy distribution is generally a unique true maximum, with

negative de®nite second derivatives, provided that the chosen

values of C� permit a feasible solution.

APPENDIX C
The dual function

When Z is considered as a function of the variables ��, each

choice of the multipliers generates a possible maximum-

entropy probability distribution pj with certain varying asso-

ciated averages C���1; �2; . . . ; �l�. It then becomes necessary

to determine the correct values of �� which reproduce a

desired set of given ®xed numerical target values C� � CT
� . A

convenient way to do this (Agmon et al., 1978) is through the

dual target function Q��1; �2; . . . ; �l�, de®ned as

Q � log Z��� ÿP
�

CT
� ��: �75�

Q has a unique minimum which is de®ned by the conditions

@Q

@��
� C���� ÿ CT

� � 0 �76�

and therefore ensures that C���� has the correct value. For an

account of dual functions, see Gill et al. (1981) and Luenberger

(1984). An elementary example of a minimal function with a

dual is seen in thermodynamics, where the Helmholtz free

energy A is the dual of the negative Gibbs free energy ÿG,

where the relationship exchanges the roles of P and V, the

pressure and volume.

Often the requirement is to ®t the distribution to a set of

averages that are only known with limited accuracy. For

example, when the target values CT
� have standard deviations

��, our objective may be to maximize the quantity

U � Sÿ 1
2

P
�

�C� ÿ CT
� �2=�2

� �77�

by solving the equations

@U

@C�

� ÿ�� ÿ �C� ÿ CT
� �=�2

� � 0: �78�

This can be converted into an equivalent dual problem

(McLachlan, 1989) to minimize the function Y��1; �2; . . . ; �l�,
Y � Q� 1

2

P
�

�2
��

2
�; �79�
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in which Q is supplemented by penalty terms that limit the size

of the multipliers ��. The condition for a minimum of Y is then

the same as for the maximum of U:

@Y

@��
� �C� ÿ CT

� � � �2
��� � 0: �80�

APPENDIX D
Cell distribution functions for N atoms

The classical theory of statistical mechanics of ¯uids deals with

a very large number N of interacting atoms in motion,

enclosed in a large box of volume V. Usually conditions are

chosen so that the number density N=V of the ¯uid tends to a

limiting value �.

The ensembles that we use for crystallographic purposes are

different. Every ensemble now represents a ®nite number N of

atoms at rest in a single unit cell of the crystal, whose volume

V, measured in standard cell fraction coordinates r � �x; y; z�,
is equal to unity. The crystal is assumed to be strictly periodic

and every other unit cell is an exact copy of the ®rst, with all N

atoms in the same positions.

When a cell contains exactly N atoms, these are described

by an N-particle probability distribution function

f �N��r1; r2; . . . ; rN� of the 3N cell coordinates, which is written

in abbreviated form as f �N��rN�. The distribution is normalized

to 1 over the cell volume, with

AN �
R

f �N��rN� drN � 1: �81�
All positions in space are equally probable so that the statis-

tical weight of an element of rN is equal to its volume drN. The

reduced single-particle and two-particle distribution functions

of the ensemble are then de®ned as the averages

��1�N �x� �
P

i

R
��ri ÿ x�f �N��rN� drN �82�

��2�N �x; y� �P
i;j

RR
��ri ÿ x���rj ÿ y�f �N��rN� drN �83�

and satisfy the normalization conditionsR
��1�N �x� dx � N �84�RR

��2�N �x; y� dx dy � N�N ÿ 1�: �85�
In a uniform ensemble, such as the ensemble for a cell in space

group P1 without any de®ned origin, ��1�N �x� has the constant

value N. Thus, ��1�N is measured in units of atoms per cell.

The statistical theory of in®nite ¯uids normally uses a scaled

distribution function g
�2�
N �r1; r2�, which tends to a limit of 1 at

well separated points. This is de®ned as

g
�2�
N �r1; r2� � ��2�N �r1; r2�=��1�N �r1���1�N �r2�: �86�

In a crystal ensemble, this long-range limit no longer holds but

in a uniform cell g
�2�
N �r1; r2� is a periodic function of the

separation between particles. Thus, when r1 ÿ r2 � u,

g
�2�
N �r1; r2� � g

�2�
N �u�: �87�

Two other useful two-particle functions are the distance

autocorrelation function k
�2�
N �u� and the pair-correlation

function h
�2�
N �u�, which are

k
�2�
N �u� �

R
��2�N �r; r� u� dr �88�

h
�2�
N �u� � g

�2�
N �u� ÿ 1: �89�

In a spatially uniform ensemble, h
�2�
N �u� and k

�2�
N �u� are closely

related, with

h
�2�
N �u� � �1=N2�k�2�N �u� ÿ 1: �90�

The de®nition of the entropy of N identical particles in clas-

sical statistical mechanics is taken from the classical limit of

quantum theory and takes the form

S � SN ÿ log N!; �91�
where SN is the classical geometrical entropy of the distribu-

tion function f �N� and ÿ log N! is a correction for the indis-

tinguishability of identical particles. Here,

SN � ÿ
R

f �N��rN� log f �N��rN� drN: �92�
The most probable distribution is the uniform one,

f �N��rN� � 1.

The distribution function of the atoms in a unit cell, which

we use here, f
�N�
cell �rN� is normalized to a cell of unit volume in

cell coordinates, unlike the conventional function f �N�gas �XN� for

a classical ¯uid, normalized for Cartesian coordinates in a

volume V. This accounts for a difference in the two forms of

entropy for the same physical situation

Sgas � Scell � N log V: �93�

APPENDIX E
Cell with N atoms and given particle distributions

Suppose that a crystal cell is known to contain exactly N atoms

with given physically feasible single-particle and two-particle

distributions ��1�N �x� and ��2�N �x; y�. We seek the unique

maximum-entropy distribution f �N��rN�, correctly normalized

to AN � 1, which achieves these average values. This distri-

bution can be derived with Lagrange's multipliers, using a

multiplier � for AN and a continuous distribution of multi-

pliers ��x� and  �x; y� for ��1�N and ��2�N , respectively. The

conditions satis®ed by variations �f �N��rN� are

�SN � ��AN �
R
��x����1�N �x� dx

� 1
2

RR
 �x; y����2�N �x; y� dx dy � 0: �94�

The standard partition-function method of Appendix B gives

a form of Boltzmann distribution, having an effective

temperature factor � � 1=kT � 1 and a positive sign to the

exponential.

f �N��rN� � �1=ZN� exp���N�rN��: �95�
The partition function is

ZN �
R

exp���N�rN�� drN �96�



in which �N�rN� is a sum of effective single-particle and two-

particle energies

�N�rN� � XN�rN� �	N�rN�
�P

i

��ri� �
P
i<j

 �ri; rj�: �97�

The value of the entropy is

SN�max:� � log ZN ÿ
R

�N�rN�f N�rN� drN

� log ZN ÿ �
@

@�
log ZN: �98�

The effective potentials are the functional derivatives of the

entropy with respect to the constraints

�SN=��
�1�
N �x� � ÿ��x� �99�

�SN=��
�2�
N �x; y� � ÿ 1

2 �x; y�: �100�
Notice that this distribution is identical in form to the statis-

tical-mechanical Boltzmann distribution of a classical ¯uid of

atoms in a known non-uniform external ®eld ��x� with a given

pair-interaction potential  �x; y�, which is a function of both

positions x and y. An important difference is that the

maximum-entropy ensemble represents the inverse of the

usual situation in physics. Here the distributions ��1� and ��2�

are given, but the statistical potentials are unknown and must

be deduced from the constraints. Under these general condi-

tions, it is not usually possible to choose  �x; y� to be a simple

function of the particle separation u � yÿ x.

The ensemble for a crystal cell without additional symmetry,

in space group P1, with no de®ned origin, necessarily has a

uniform single-particle distribution and only the pair distri-

bution is known. Under these conditions, the pseudo-potential

��x� vanishes and the ensemble reduces to

f �N��rN� � �1=ZN� exp��	N�rN��: �101�
In all these ensembles, the unique appropriate statistical

potentials ��x� and  �x; y� will exist for any well posed

feasible set of constraints. The problem of ®nding these

functions in practice is more dif®cult. In principle, however,

the solution is easily obtained by minimizing the corre-

sponding dual function QN of Appendix C for speci®ed target

particle distributions ��1�TN �x� and ��2�TN �x; y�. The dual function

QN is derived from log ZN and is therefore a functional of the

proposed ®elds ��x� and  �x; y� with the form

QN � log ZN��; � ÿ
R
��1�TN �x���x� dx

ÿ 1
2

R R
��2�TN �x; y� �x; y� dx dy: �102�

To use this approach successfully, one needs a suitable many-

body approximation for ZN as a function of the variables

��; �.

APPENDIX F
Cell with N atoms and given autocorrelation function

The statistical quantity in the theory of ¯uids that corresponds

to the crystallographic originless Patterson function is the

particle pair probability autocorrelation function for a vector

separation u,

k
�2�
N �u� �

R
��2�N �r; r� u� dr; �103�

which has a mean value of N�N ÿ 1� over all separations u. For

a cell with non-overlapping hard-sphere atoms, there is no

origin peak and k
�2�
N �0� � 0.

The maximum-entropy ensemble for a spatially uniform cell

ensemble in which the form of k
�2�
N �u� is speci®ed can be

deduced immediately from the more general conditions in

Appendix E. Thus, the Lagrangian multipliers give

�SN � ��AN � 1
2

R
 �u��k�2�N �u� du � 0 �104�

in which ��x� is unused and  �u� is now a centrosymmetric

two-particle potential. It is a periodic function of the inter-

particle separation vector u � xÿ y. The form of the prob-

ability distribution is again

f �N��rN� � �1=ZN� exp��	N�rN�� �105�
but with the difference that 	N�rN� depends on the separa-

tion-dependent potential  �u� instead of the more general

two-point potential  �r1; r2�.
	�N��rN� �P

i<j

 �ri ÿ rj�: �106�

The entropy for this solution is

SN�max:� � log ZN ÿ h	Ni �107�
and the functional derivative of the entropy with respect to the

autocorrelation function becomes

�SN=�k
�2�
N �u� � ÿ 1

2 �u�: �108�

APPENDIX G
Cell with N atoms and given Fourier components of the
distribution functions

Next we suppose that the ensemble in the cell is not neces-

sarily uniform but has known average values for certain

Fourier components H 6� 0 of the real single-particle distri-

bution function and the real two-particle correlation function.

(A slightly more general situation would allow for two inde-

pendent selections of the re¯ections H0 and H00, which have

given one- and two-particle components.) Thus,

h�N�H�i � �̂�1�N �H� and h�N�H�i � k̂
�2�
N �H� �109�

for each of the selected re¯ections. The Lagrangian multipliers

for this system are now taken to be �̂�H� and  ̂�H�, with the

maximum-entropy condition

�SN � ��AN �
P
H

�̂�ÿH���̂�1�N �H� � 1
2

P
H

 ̂�ÿH��k̂�2�N �H� � 0:

�110�
The sums are taken over both positive and negative values

of H. Notice that, by de®nition, �̂�h� �  ̂�h� � 0 for the

unmeasured re¯ections, h, so that the values of �̂�1�N �h� and
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k̂
�2�
N �h� are unconstrained. The N-particle probability distri-

bution is again

f �N��rN� � �1=ZN� exp���N�rN��; �111�
where �N�rN� contains both single-particle and two-particle

Fourier components.

�N�rN� � XN�rN� �	N�rN�
�P

H

�̂�ÿH��N�H� � 1
2

P
H

 ̂�ÿH��N�H�: �112�

Although this solution appears super®cially to be the same as

the one derived in Appendix E, it differs because the Fourier

components of the statistical forces for the unmeasured

re¯ections all vanish. The entropy for this solution is

SN�max:� � ZN ÿ
P
H

�̂�ÿH��̂�1�N �H� ÿ 1
2

P
H

 ̂�ÿH�k̂�2�N �H�;
�113�

and the solution is unique, provided that these linear

constraints are physically feasible. The gradients of the

entropy and partition function are respectively given by

dSN � ÿ
P
H

�̂�ÿH� d�̂�1�N �H� ÿ 1
2

P
H

 ̂�ÿH� dk̂
�2�
N �H� �114�

dZN �
P
H

�̂�1�N �ÿH� d�̂�H� � 1
2

P
H

k̂
�2�
N �ÿH� d ̂�H�: �115�

It is useful to rescale  ̂�H� into a normalized form that is

independent of the number of atoms by making the trans-

formation

 E�H� � N ̂�H�: �116�
With this convention, the total pair potential for a set of equal

atoms becomes

	N�rN� � P
H>0

 E�H�fjEN�H�j2 ÿ 1g; �117�

summed over a hemisphere of reciprocal space. A further

reduction is often convenient. This is to remove the origin

peak from the spatial pairing force  �u� and use a set of

originless Fourier potentials  0
E�H�. Suppose that there are nR

measured re¯ections and that  Em is the mean of their pair

potentials. Then we de®ne

 0
E�H� �  E�H� ÿ  Em

 Em � �1=nR�
P
H 6�0

 E�H� �118�

with  0
E�h� � 0 for all unmeasured re¯ections. The originless

spatial potential becomes

 0�u� � �1=N�P
H6�0

 0
E�H� exp�ÿ2�iH � u�: �119�

This transformation reduces the pair potential for equal atoms

to its simplest form

	N�rN� � P
H>0

 0
E�H�jEN�H�j2: �120�

The sum is now over the half-space of measured re¯ections H.

The correct values of the statistical forces �̂�H� and  ̂�H�
may in principle be determined by setting up the dual minimal

function QN , as described in Appendix E, with the desired

target values �̂�1�TN �H� and k̂
�2�T
N �H�. Alternatively, if the data

are only to be ®tted to a certain accuracy, the error dual

function YN can be used. The error function, unlike QN, will

always yield a solution with ®nite values for the statistical

forces.
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